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SOLUTION OF SYSTEMS OF NONLINEAR EQUATIONS BY THE METHOD OF
DIFFERENTTATION WITH RESPECT TO A PARAMETER

M. N. Yakovlev

The authors of [1] and [2] proposed the following method of /1#6
differentiation with respect to a parameter for solution of systems
of nonlinear equations.

t = ooe ese see f eecoe
Let f(x) (fl(xl’ ’Xn)’ f2(xl’ ’Xn)’ ’ n(xl’ ’Xn))

be a vector function of n real variables. In order to find a solu-
tion for the system

f(X) =0 (l)
of n real equations, we consider a system
F(X, x) = O’ (2)

depending on a real parameter A, A € [0, 1], in such a manner that
Fx, 1) = f(x) and a solution to the system F(x, 0) = O exists and
can be found easily. ILet this solution be xo; then, in order to

find a solution for Eq. (1) we propose to differentiate (2) with
respect to X, assuming that x is a function of A, and to attempt to
solve the Cauchy problem for the differential equation thus obtained
with the initial condition x (0) = xo at the point A = 1.

In order to justify this method of solving systems of equa-
tions we must prove that the Cauchy problem thus obtained has a
solution and, moreover, the solution is unique everywhere in the
interval [0, 1]. Below we will construct such a proof for two
methods of introducing the parameter A.

1. Notation. Below we shall use the following notation and

assumptions: G is & domain in the n-dimensional real space R%; (x, y)

is the scaler product of elements x and y in Rn, where Rn is Euclidean;



X is a fixed point in G; #£(x) is & function in the class Cl(G);
Jf(x) (more briefly J(x)) is the Jacobian matrix of the function f;

S(x r) is the set of points x € R such that | x - xo l<r; 0<sr<=;
r is the least upper bound of the numbers r such that S(x , r)cG;
r* ig the least upper bound of the numbers r such that S(XZ, r)c G
and det J(x) # O (it is clear that r¥ < ro); D(r) is a function that
is continuous and nondecreasing in the interval 0 < r < r¥ and is

-1
such that || 7~ (x) | < p(r) vwhen I x - X | < » < r%;

L au when 0 <r <

A(r) = D(u)

O e—qh

r

(if r* = ® and the integral J L __ du converges, we assume that
o D(u)

Nr*) =®), p¥ = A (r¥); A-l(p), 0 < p < p¥, is the inverse of
Alr).

In the proofs we will give below we will use the following
theorem, which was stated by S. M. Lozinskiy (see [3], p. 135,

Theorem 1).

Theorem: If I f(xo) | < p*, the equation f(x) = O has a

unique solution x¥, if r¥ = p¥ = ®, and

o -x D =a™t ¢l 2= II).
0 0

Below we will use the following

Temms, (uniqueness of solution). If (J(x)h, h) 2 m(r) (h, h),

- n
m(r) >0 for ” X - X, ” Sr <r¥ h €R, the solution to the equation



f(x) = O is unique inside the sphere S(xor*).

2. Theorem 1. ILet*

Mx, A\)=x - xo + A [£(x) - x + xo] =0 (2.1)

and assume that the following conditions are satisfied:

(&) (J (x) h, h) 2m(r) (h, h), x €8 (xo, r), m(r) > 0, is & function

that is monotonic and nonincreasing in the interval O < r < r¥,

r
() | f(xo) | < px%, vhere %% = A% (r*), a* (r) = [ m* (u) du, m*
0

(r) = min (1, m(r)
[=2]

(if r* = ggg_f m*(u) du converges, then p¥¥ = ®), Then the Cauchy
0]

problem for the differential equation

dx -1
ax = [(L - A) B+ re'(x)] [x - e £(x)] (2.2)

with the initial condition x(O) = X has & solution, indeed, a unique
L) 2 LE 0 e .

solution, everywhere in the interval [0, 1].

*Such a method for introducing a parameter was discussed for special
cases earlier in [4] and [5] (see [6] as well). This theorem general-
izes (in particular, includes cases in which the equation f£(x) = O
has more than one solution) and strengthens (we are relieved of the
necessity of determining the behavior of the function £(x) and its
derivative f£'(x) at infinity; in order to guarantee solvebility of
the Cauchy problem, the authors of [4] had to carry out such an
investigation) the results obtained there.
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Proof. We shall first show that Eq. (2.1) uniquely de-
termines the function x(A), which is defined on the interval
0=A=1,

For each fixed A € [0, 1], satisfaction of conditions &) and
b) implies satisfaction of the conditions of S. M. Lozinskiy's
theorem and the lemma about unigueness of solutions for the func-
tion F(x, A). It follows that for each A € [0, 1] there exists a u
unique solution x(A) for Eq. (2.1), i.e., this also implies that
a function satisfying (2.1) is defined on [0, 1] and

”f(xo)”
be ) - ngl [ =S <, (2.5)

m* (u)

We shall now show that it is differentiable. The conditions
of the implicit-function theorem for the function F(x, A) are
satisfied at each point (A, x(A)). Indeed,

1) F(x (}), A) =0;

2) [F! (x, A)]"1 exists for all x such that

p**

e - xoll < =% = [ =2

and A€ [0, 1]

m* (u

and, therefore, for (x (), A) (by virtue of (2.3)).

We can use the implicit-function theorem to conclude that in
some neighborhood A there exists, for each A€ [0, 1], some continu-
ous and differentiable function that satisfied Eq. (2.1) and, by
virtue of the uniqueness of the solution for this equation, coin-
cides with x (A) for each A€ [0, 1]; thus

d -
&i; - - [F (x, V1T E, (x, M) (2.4)



for each point A€ [0, 1].

We shall now prove that the uniqueness of the solution for
differential equation (2.2) with the initial value x(0) = %, for
A€ [0, 1]. Equation (2.2) is equivalent to Eq. (2.1) for all A€ [0,
1] and functions x(A) whose values belong in the sphere S(xo, T¥) when

0 < A <1 and are such that x(0) = x Expression (2.3) and the

o‘
uniqueness of the solution to (2.1) imply that the solution of the

Cauchy problem for (2.2) with the initial condition x(0) = x, is
unique.

Corollary 1, Assume that the following conditions are satis-

fied:

a) (3 (x)h, b) Zm (h, b), m >0, where |x - x |l s =,
b) i; I f(xO)H < r, where m* = min {1, m}.

Then the Cauchy problem for (2.2) with the initial condition x(0) =

= xo has & solution, indeed, a unique solution, everywhere in the in-

terval O = A < 1],

Corollary 2. If (J (x)h, h) 2m (h, k), m >0, for all x,

n
h € R, the Cauchy problem for (2.2) with the initial condition
x(0) = X, has a solution, indeed, a unique solution, everywhere in

the interval 0 < A £ 1 for any Xqe

3. We shall now consider the other method of introducing the
parameter,

Theorem 2, ILet

F(x, M) = £(x) - (1 - M) £(x,) = 0; (3.1)

then, if
a) (3 (x)h, h) 2m (r) (b, b), x5 (xy, r), B, m (r) >0

is a function that is nonincreasing in the interval 0-< r < r¥,
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b) lleCxy)ll < ox,

the Cauchy problem for the differential equation

= et
o=l (x)17 £(x,) (3.2)

with the initial condition x(0) = %5 has a solution, indeed, a

unique solution everywhere in the interval 0 < A < 1,

Proof. Again we use S. M. Lozinskiy's theorem and the lemma
about the uniqueness of the solution to conclude that there exists
a function x(A) that satisfies (3.1) everywhere in [0, 1]. 1In vir-
tue of the implicit-function theorem, whose conditions are satisfied
by every point (A, x(A)), A€ [0, 1], this function xgk) is continuous
and differentiable when A€ [0, 1] and satisfies (3.2)., Uniqueness
is proved as in Theorem 1.

Corollary 3. IT

a) (j (x)h, h)2m (b, h), m >0 for lx - XOH <r <rx,
) = lle(x)ll <,

then the Cauchy problem for (3.2) with the initial condition x(0) =
= x,. has a solution, indeed, & unique solution, everywhere in the

0
interval 0 < A < 1,
Theorem 3. If r¥ = p*¥ = ®, the Cauchy problem for Eq. (3.2)
with the initial condition x(0) = XO has a solution, indeed, a

unique solution, everywhere in the interval 0 < A < 1 for any xo.

The proof is based on S. M. Lozinskiy's theorem and is similar
to the proofs of Theorems 1 and 2,

4, Application of Galerkin's method or the finite-difference
method to nonlinear problems leads to the necessity of solving non-
linear systems of a finite number of equations with a finite number
of unknowns. In order to solve such systems, we can use the method



of differentiation with respect to a parameter,

We shall now discuss examples.

Assume that on & linear set Q that is dense in a real Hilbert
space H we assign & nonlinear operator P(x) whose domain of values
lies in H. Assume thet the operator P(x) is weakly Hatondifferen-
tiable in Q, and let (P' (x) h, h) 2m (h, h), m > 0; x, h&2, We
shall solve the equation p(x) = O by the_Galerkin method, i.e., on
taking elements linearly independent {wk}ﬁ=l’ mk Ef@ as a coordinate

system, we will attempt to find an approximate solution in the form

n

Up = z P
k=1

and determine the ¢, from the system of equations (P (un), wk) =0,

k=1, 2, «se, n. The Jacobian matrix of this system, which is
n

. . = )

clearly representable in the form {(P (un) ®; 5 mk)}i,k=l J, is

n
invertible for all ¢ = {ck}k—l €R" and ”J'ln n < l/ml(n), where
(n A R

A is the smpllest characteristic value of the Gram matrix of the
n
system {wk}k—l and, consequently, when they are solved with the

method of differentiation with respect to & parameter, systems (2.2)
or (3.2) are solvable everywhere in [0, 1], no matter what the
initial wvalue xo.

Schechter [7] discussed the problem of uniform positive defi-
niteness of the Jacobian matrix of a system of finite difference
equations for the case in which the finite-difference method is ap-
plied to variational problems. That is, it was exactly he who dis-
cussed the variational problem of the minimum [T Fx, ¥y, p, q) dxdy

D
under the constraint u‘r = b(x, y) and derived conditions for uniform

positive definiteness of the Jacobian matrix. Note that the result
of this paper applies to the case in which the integrand is the more
general function & (x, y, p, q, u) = F(x, y, p, q) + Fi(x, ¥y, u), if
the following condition is also satisfied:

[1k9



32
‘—2F (x, v, u) 20,

du

Comparison of the results of [T] with Corollary 2 or Theorem
5 of the present article makes it possible to assert the solvability
of the Cauchy problem for the corresponding systems of differential
equations of the form (2.2) or (3.2) everywhere in the interval
0 < A <1 for any initial value Xy
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